
 

 

 

PROJECT WA063A0 

RDG DARWIN 

REAL TIME TRAIN INFORMATION 

OUTPUT PORTS 

Push Ports 

ActiveMQ Communications Interface Specification 

 

 

WA063A01624 Issue 1  18th January2017 

 

Originator’s signature & date  Approver’s signature and date 

  
 

  

D Barnard  T Parkinson 

 

Thales, Ashurst Drive, Bird Hall Lane, Cheadle Heath, Stockport, Cheshire SK3 0XB, UK 

Tel: +44 (0)161 491 4001•Fax: +44 (0)161 741 3704•ukinfo@thalesgroup.com•www.thalesgroup.com 



 

WA063A01624 Issue 1 ii  

 

 

DISTRIBUTION 

1 Project Master File   

2 RDG   

    

    

    

 

ISSUE RECORD 

Issue  Date Purpose 

1 18/01/2017 Split the Push Port Interface Specification to separate the 
data specification from the communications specification. 
Add clarifications from comments. 

 

© 2017 Thales Transport & Security Ltd - This document is the copyright of Thales Transport & Security Ltd and is 

issued in confidence. It must not be used other than for the purposes of the contract to which it relates and is not 

to be reproduced in whole or in part without the prior written permission of Thales Transport & Security Ltd. 



 

WA063A01624 Issue 1 iii  

 

CONTENTS 

 

1. INTRODUCTION 1 

2. REFERENCES 1 

3. COMMUNICATION 2 

3.1 Connection 2 
3.1.1 Connection Failover 2 
3.1.2 Connection Options 3 
3.1.3 Internet Connection 3 
3.1.4 Exclusive Consumers 3 

3.2 FTP 4 

3.3 Amazon S3 4 

3.4 Availability 4 

4. CONFIGURATION 5 

4.1.1 Filtered Push Ports 5 

5. PROTOCOL 9 

5.1 Message Queues 9 
5.1.1 Unfiltered Clients 9 
5.1.2 Filtered Clients 9 

5.2 Message Sequence Numbers 10 

5.3 Connection and Reconnection 10 

5.4 Snapshots 10 
5.4.1 Snapshot Queues 11 
5.4.2 Snapshot Process 12 

5.5 Darwin Timetable Rebuild 13 

5.6 Darwin Status Messages 13 

6. TIMETABLE FILES 15 

6.1 Timetable IDs 15 

7. ABBREVIATIONS AND GLOSSARY 16 

 



 

WA063A01624 Issue 1 1  

 
 

OUTPUT PORTS 

PUSH PORTS 

ACTIVEMQ COMMUNICATIONS INTERFACE SPECIFICATION 

 

 

 

 

1. Introduction 

Push Ports are provided to meet the needs of external systems that deal with high volumes 
of enquires and that require rapid access to Darwin (RTTI) information. Darwin provides a 
“push” service of information in real-time that allows the client system to hold a copy of 
the Darwin database. 

This document addresses a communications Interface Specification for the retrieval of 
information via the Darwin (RTTI) Push Ports Interface. The low-level communications 
interface to the Push Ports can vary, and the Apache ActiveMQ message queue-based 
interface is documented in this specification. Even though the Push Ports are accessed by 
different mechanisms, the data received by a client is the same and is documented in the 
Push Ports Data Interface Specification (Reference 2). 

Darwin makes available via the Push Port creation of, and changes to, train schedule 
records, together with train running predictions made by Darwin. Note that predictions and 
changes to schedules are relative to the original schedule as created in Darwin, usually 
sourced from ITPS. In order to correctly interpret Darwin data, clients must also have 
access to the ITPS schedule data. 

Darwin also supports the download of a complete XML-format timetable for those Clients 
who do not have access to their own ITPS-generated timetable. 

Documentation for the ActiveMQ API is freely available online and can be accessed at the 
URL “http://activemq.apache.org/”. There are also multiple language-specific API 
wrappers that are available for most common programming languages. 

2. References 

1. Common Interface File, End User Specification, Issue 28, Nov. 2012. Issued by Network 
Rail. 

2. P75301004 Push Port Data Interface Specification. 

3. ActiveMQ Online Documentation (http://activemq.apache.org/) 

  

http://activemq.apache.org/
http://activemq.apache.org/


 

WA063A01624 Issue 1 2  

 
 

3. Communication 

Physical network connection between the Client network and Darwin is not specified here, 
but will typically be either a dedicated Leased WAN connection installed and maintained 
by an RDG supplier, a pair of VPN connections operating over the Internet, or direct 
Internet access. The difference between these options related to Client connectivity 
mainly involves resilience features in the event of a failure within the Darwin System. 

When use is made of the dedicated WAN connection, failures within the Darwin system are 
transparent (at the communications level) to the Client system (other than a brief loss of 
connectivity). The WAN connection will be automatically re-configured to connect to an 
active Data Centre.  

If VPN connections are used, there must be a separate VPN to each of the Darwin Data 
Centres and it is the responsibility of the Client to implement any logic and network 
routing to connect to any active Data Centre. 

Direct Internet connectivity will be resilient at the Darwin end, but may not be at the 
client end, according to the local environment. 

Security for the communication link is provided by use of the Leased WAN, or over the 
Internet by VPN encryption. Direct Internet communication will not be encrypted. The 
Darwin Firewall will only allow connection from known IP addresses to the ActiveMQ port. 
Push Port information is not deemed to be highly sensitive, so these measures are 
considered adequate. 

In addition, connection to the ActiveMQ message broker utilises credentials to restrict the 
message queues that a client is allowed to access. 

3.1 Connection 

Push Port communication is carried out over one or more ActiveMQ message queues. 

Client systems communicate with the Darwin System by connecting to a Darwin ActiveMQ 
messaging server. There may be multiple instances of the ActiveMQ server, for 
performance and resilience reasons. The Push Port Client application must specify the 
following in order to make a connection to Darwin: 

• Name(s)/IP Address(es) and port number of the Darwin ActiveMQ server(s). 

• Access credentials. 

• ClientID allocated to the Push Port Client. 

ActiveMQ supports several “wire protocols”, but currently only the native “OpenWire” 
protocol is supported by Darwin. 

3.1.1 Connection Failover 

Darwin will support multiple instances of the ActiveMQ service, any of which may be used 
by clients. If a service becomes unavailable then the client should connect to another 
available instance. 



 

WA063A01624 Issue 1 3  

 
 

The recommended way of achieving this failover is to use the ActiveMQ “failover:” 
transport in the connection request. This transport has the following general syntax: 

failover:(uri1,…,uriN)?transportOptions 

where uri is like: “tcp://host:port” 

By default, this transport will randomly select one of the configured URIs to connect to, 
and if that connection fails it will automatically attempt to reconnect to one of the 
alternatives, until a successful connection is made. Note that it is possible to use the 
failover protocol even if there is only one ActiveMQ server available (e.g. a staging 
system). The retry behaviour will still occur, although with just the one URI to try. 

3.1.2 Connection Options 

Many options can be set on the connection to control or optimise the behaviour of message 
delivery. Most can be left to their defaults in normal operation. Full details of the 
available options can be found in the ActiveMQ documentation (ref. 3). 

Options can be set on the transport URI (as above in the “?transportOptions” value), 

or directly from code as properties on the ActiveMQConnection object. 

Options that must be set are: 

• watchTopicAdvisories=false 

3.1.3 Internet Connection 

The connection details when communication to Darwin is via a dedicated network 
connection or VPN will vary according to the setup of those communications links. The IP 
addresses to use for the connection to the Darwin ActiveMQ servers will be advised at the 
time of setup. 

If communication is via the Internet then the Darwin ActiveMQ servers can be found at: 

amq1.realtime.nationalrail.co.uk port 61616 

amq2.realtime.nationalrail.co.uk port 61616 

Note that clients that connect to a Darwin Staging system will have separate name(s)/IP 
addresses specific to that system, but otherwise connection details will be the same. 

Using these details, an example minimum Internet ActiveMQ connection URI is: 

failover:(tcp://amq1.realtime.nationalrail.co.uk:61616,tcp:/

/amq2.realtime.nationalrail.co.uk:61616)?watchTopicAdvisorie

s=false 

3.1.4 Exclusive Consumers 

A feature of ActiveMQ that may be of use to clients is the “exclusive consumer” option. By 
default, multiple client connections may be made to a queue and messages will be 
distributed round-robin between all connected clients. This could be used in a simple “load 
balancing” scheme, whereby each connected client will process a subset of the messages 



 

WA063A01624 Issue 1 4  

 
 

queued. However, this is not really recommended, as it makes it difficult to correlate the 
individual messages and their sequence numbers (sec. 5.2), though clients are free to 
make their own choices in this area. 

Alternatively, each client can set the “consumer.exclusive=true” option when opening the 
queue. In this case, all but one of the client connections will block and only one will 
succeed. That client will receive all messages that are queued. If the connected client 
disconnects for any reason, one of the other blocked consumers will be selected as the 
exclusive consumer and all subsequent messages will be delivered to this client. 

This allows the clients to implement a simple failover mechanism, whereby another client 
instance can automatically take over from a failed instance. 

Use of this exclusive consumer option is not a requirement in order to use the ActiveMQ 
Push Port service, but may be used if useful to the client. Full details can be found in the 
ActiveMQ online documentation (ref. 3). 

3.2 FTP 

Darwin provides an FTP service, in order to give access to Timetable Data. The FTP service 
is only available to clients that access Darwin via a dedicated communications interface or 
an encrypted VPN (not via the Internet). 

Each client that requires FTP access will be provided with the IP address(es) of the FTP 
server, a username and password. The account will be read-only and clients cannot write 
or delete files. 

3.3 Amazon S3 

An Amazon S3 “bucket” is provided to give an alternate means of access to Timetable Data 
files (section 6). This service will be available over the Internet.  

Each client that requires S3 access will be provided with the URL of the “bucket”. Access is 
limited to IP address white-listed clients. The access will be read-only and clients cannot 
write or delete files. 

3.4 Availability 

The Push Port service is available continuously, 24x365. Data is provided as soon as it is 
updated, other than when Darwin is re-building its timetable, when it may be queued for a 
short time. Darwin typically re-builds its timetable at 02:00 each day, though this may 
possibly occur at other times due to operational reasons. 

  



 

WA063A01624 Issue 1 5  

 
 

4. Configuration 

In order to use the ActiveMQ Push Port, various configuration items are required. Some of 
these are defined by Thales outside the client’s control, and some are defined by the 
client. 

The Thales configuration includes: 

• Access credentials 

• Port type: Unfiltered or Filtered 

• ClientID 

• DCIS ‘Instance ID’ (if applicable) 

• Message Filtering restrictions (if applicable) 

Each port is identified by its unique ClientID. This is analogous to the TCP port number 
used in the original socket-based Push Ports. For example, a client that had a socket-based 
Push Port on port 20000 might be given a ClientID of “Port20000”. However, the ClientID is 
just an arbitrary string, so there is no significance in the actual value used. The ClientID 
must be used to set the equivalently named ActiveMQ Connection property, and is also 
used in the names of certain queues. 

The Push Port service supports the filtering of data for a client, as controlled by the above 
“Port type” configuration item. If a client is defined as Unfiltered, no further 
configuration is needed. 

For Filtered clients, the additional configuration is defined by the client entering the data 
into a Darwin web site. 

4.1.1 Filtered Push Ports 

4.1.1.1 Configuration Web Site 

The client configuration data for Filtered Push Ports is managed by logging into the 
following Darwin web site: 

https://realtime.nationalrail.co.uk/PPConfig/ 

Note. This URL is for live Push Ports only. Staging Push Ports have a similar web site on 
the applicable staging system. 

The credentials used to access the web site are the same as those given to access the 
ActiveMQ Push Port. 

Once logged into the configuration web site, a user may create and edit the following filter 
criteria: 

• Schema Version 

• “New” or “Old” reason codes (default “new”) 



 

WA063A01624 Issue 1 6  

 
 

• TIPLOC Filtering 

• TD Filtering 

• Message Type Filtering 

Saving any of the filter criteria will apply that filter to the running Push Port immediately. 

4.1.1.2 Schema Version 

A filtered client must identify which Push Port data schema version they require. A user of 
the web site will be presented with a list of all of the supported data schema versions and 
one of them must be selected. On creation of a new client configuration, the schema 
version will default to the latest version available at that time. 

If the user changes the schema version and saves it, the system will immediately 
automatically reconfigure to start sending data in the new version. This data will be 
written to a new version-specific queue and the message sequence number will be reset 
(see section 5.2). The queue associated with the previous version will continue to exist (for 
the time being), but no further data will be written to it. 

Note that filtering configuration is independent of the schema version requested. Filtering 
may be used with any supported schema versions and changing schema version will not 
affect filtering. 

4.1.1.3 Reason Codes 

For historic compatibility reasons, the Push Ports may be configured to publish delay and 
cancellation reasons with different coded values. By default, the Push Ports always publish 
the “new” reason code mappings (>=500), but for certain clients these codes may be 
translated to be compatible with the “old” reason codes (<500). New clients must always 
use “new” reason codes. 

Note that changing the reason codes setting will also reset the message sequence number 
(see section 5.2) and will require a snapshot to be performed in order to maintain full 
synchronisation. 

4.1.1.4 TIPLOC Filtering 

Push Ports can be filtered by a set of TIPLOC locations.  

When a port is filtered by location, the server will only send data to a client that is 
relevant to one or more of the filter locations, or has been explicitly activated by the 
client associated with the port using the DCIS Web Service interface. Thus, updates for a 
service will be sent if that service calls at one of the filter locations (or is associated with 
a service that calls at a filter location). Station messages (<OW> elements) will only be 
sent if they apply to a filter location. Note that this applies equally to both “normal” 
update messages and snapshot messages. However, also note that the download-able 
Timetable files (see section 6) will not be filtered and will always contain information for 
all services and locations. 

Once a filtered port sends data for a service, it will continue to send updates to that 
service even if the service no longer meets the filter criteria. Thus, if a service is edited to 
call at a filter location, it will be sent to the client. If that service is subsequently edited 



 

WA063A01624 Issue 1 7  

 
 

to remove that filter location, the updates to the service will still be sent to the client. 
Once a service is associated with a filtered port, it will not be un-associated until the 
service is removed from the Darwin timetable. 

By default, when a new filtered client configuration is created, no TIPLOC filter criteria 
will be defined. This means that no location-based updates will be sent to the client until 
the configuration is edited to define the TIPLOC filter criteria. However, any explicit 
activations by DCIS clients will still be sent to them. 

Normally, a client may only filter on calling points (i.e. locations with a passenger 
activity). Passing services, where a train does not stop at a filtered location, will not be 
returned. However, it is possible for Thales to enable configuration to allow passing trains 
to be sent. If a client requires such configuration, then a request should be submitted to 
RDG. 

TIPLOC filter criteria are edited by selecting one or more TIPLOC locations from a list of all 
TIPLOCs known to Darwin. If a location has more than one TIPLOC associated with it, then 
all TIPLOC values must be supplied in order for all data to be received. 

4.1.1.5 TD Filtering 

Push Ports can be filtered by a set of Train Describer (TD) Area identifiers.  

When a port is filtered by TD Area, the server will only send data to a client that is 
relevant to one or more of the filter TD Areas. 

The exact data that is received is documented in the Push Port Data Specification 
(reference 2). However, in order to receive any of this data, a client must explicitly 
request those TD area codes for which they require data. By default, when a new filtered 
client configuration is created, no TD filter criteria will be defined. This means that no TD-
based updates will be sent to the client until the configuration is edited to define the TD 
filter criteria. 

TD filter criteria are edited by selecting one or more TD Area codes from a list of all TD 
Area codes known to Darwin. 

4.1.1.6 Message Type Filtering 

Push Ports can be filtered by message type. The following message types may be filtered: 

• Station (OW) messages 

• Train (adhoc) Alert messages 

• Train Order messages 

• Tracking ID messages 

• Alarm messages 

Filtering of Forecast (TS) messages is also possible, but requires special Thales 
configuration to be manually set up. Clients that need such configuration should submit a 
request, with their usage scenario, to RDG or the Darwin Service Desk. 



 

WA063A01624 Issue 1 8  

 
 

Note that not all message types are available in all schema versions. If a message type is 
requested to be sent, but is not supported by the configured schema version, then the 
configuration will be ignored. 

It is possible that certain message filter settings will be restricted in Thales configuration 
by making them read-only so they cannot be changed by the user. 

By default, when a new filtered client configuration is created, all non-read-only message 
types will be sent. 

  



 

WA063A01624 Issue 1 9  

 
 

5. Protocol 

5.1 Message Queues 

The Push Ports will write data messages to each of a set of ActiveMQ message queues. 
These messages will be written continuously, whether a client is connected or not.  

In order to limit resource usage, and prevent clients from receiving very out of date data, 
each message will have relatively short message lifetime (in the order of 10 minutes). 

If a client disconnects from a message queue and reconnects again before the oldest 
message expires then all of the messages queued in the interim will still be delivered. 
However, note that the message expiry is based on clock times, so it is important that 
client clocks have accurate times. For example, if the client clock is 11 minutes fast then 
no messages will be received as they will appear to have expired when they are delivered 
to the client. 

If a client is normally not interested in the Push Port data (for example, a backup server), 
it is preferable for it to read the data off the queue anyway and discard it. Not only will 
this improve resource usage on the Darwin ActiveMQ servers, it will prevent the client 
receiving a full queue of 10 minute old data when they do finally connect. 

The name of the queue that a client will connect to is specific to that client, and depends 
upon whether the client is configured to be an Unfiltered or Filtered client. 

5.1.1 Unfiltered Clients 

The queue name that an Unfiltered client will connect to has the general format: 

Consumer.{CLIENTID}.VirtualTopic.PushPort-v{VERSION} 

where {CLIENTID} is the ClientID allocated in the Thales configuration for this client, and 
{VERSION} is the version ID of the Push Port schema version required, e.g. “14”. 

So, for example, if a client has a ClientID of “Port20000” and requires data conforming to 
schema version “9”, they will connect to queue: 

Consumer.Port20000.VirtualTopic.PushPort-v9 

Alternatively, if an Unfiltered client requires Push Port data with reason codes mapped to 
“old” values (see section 4.1.1.3) then a connection to the following queue name should 
be made: 

Consumer.{CLIENTID}.VirtualTopic.PushPort-OldR-v{VERSION} 

5.1.2 Filtered Clients 

The queue name that a Filtered client will connect to has the general format: 

Filtered.{CLIENTID}.PushPort-v{VERSION} 

where {CLIENTID} is the ClientID allocated in the Thales configuration for this client, and 
{VERSION} is the version ID of the Push Port schema version required, e.g. “14”. 



 

WA063A01624 Issue 1 10  

 
 

So, for example, if a client has a ClientID of “Port20000” and requires data conforming to 
schema version “9”, they will connect to queue: 

Filtered.Port20000.PushPort-v9 

Note that, unlike the case for an Unfiltered client, there isn’t a separate queue name for 
“new” or “old” reason codes. Messages will be queued to this same queue with the 
appropriate reason code mapping, according to the setting of the configuration data. 

5.2 Message Sequence Numbers 

Each message added to a message queue will be given a Message Sequence Number. The 
Message Sequence Number will be added to the message as an ActiveMQ message property 
called “PushPortSequence”. To be absolutely clear, this is a property of the message 
itself, not part of the data within the message. 

This property will start at zero and wrap back to zero after reaching 9,999,999 (i.e. 
modulus 10,000,000). The sequence number may also be reset back to zero if the Darwin 
Push Port services are restarted, or possibly for other reasons. 

The purpose of the sequence number is to detect if messages are lost for any reason. If a 
message is received whose sequence does not follow on from the previous message then it 
should be assumed that messages may have been lost and a snapshot will be required to 
re-synchronise. 

5.3 Connection and Reconnection 

A client will make a connection to the ActiveMQ server, as detailed in section 3.1. Once 
successfully connected, the client queue should be opened, as detailed in section 5.1. 

Connection for the first time, or after a long outage, can be handled with the same 
procedure as a reconnection after a short outage, as follows: 

1. Read the first message from the queue. 

2. If the sequence number of that message is the next expected sequence number 
after the last message successfully received from the previous connection then no 
messages have been lost during the disconnection and this and subsequent 
messages can now be processed normally. 
 
This of course requires that the previous sequence number is remembered by the 
client application. On the first connection attempt, it is suggested that the “last 
sequence number” is initialised to an invalid value (such as -2) to force a failed 
match. 

3. If the sequence number does not follow on from the last known one, then a 
snapshot will be required, as detailed in section 5.4, and the current message can 
be discarded. 

5.4 Snapshots 

When a client has determined that a snapshot is required then the following procedure 
should be performed.  



 

WA063A01624 Issue 1 11  

 
 

Note that the entire snapshot process must be completed within the expiry time for 
messages (see section 5.1), otherwise data will be lost and another snapshot will be 
required – presumably having the same result again. 

If this is a problem, it is suggested that snapshots and messages are simply copied to some 
local queues without any expiry times before being processed as needed. If using ActiveMQ 
for these local queues, it is suggested that using Apache Camel (which is built into 
ActiveMQ) as a message bridge be considered. 

The ActiveMQ Push Port interface supports only Standard Snapshots and does not support 
snapshots via FTP. 

5.4.1 Snapshot Queues 

Darwin provides a single, writable Snapshot Request queue to request a snapshot. This 
queue is named: 

Snapshot.Request 

In addition, there are a set of separate Snapshot Response topics for Unfiltered and 
Filtered clients. 

The topic name that an Unfiltered client will connect to has the general format: 

Snapshot.Response-v{VERSION} 

where {VERSION} is the version ID of the Push Port schema version required, e.g. “14”. 

Alternatively, if an Unfiltered client requires Snapshot data with reason codes mapped to 
“old” values (see section 4.1.1.3) then a connection to the following topic name should be 
made: 

Snapshot.Response-OldR-v{VERSION} 

The topic name that a Filtered client will connect to has the general format: 

Snapshot.{CLIENTID}.Response-v{VERSION} 

where {CLIENTID} is the ClientID allocated in the Thales configuration for this client, and 
{VERSION} is the version ID of the Push Port schema version required, e.g. “14”. 

As in the case of the filtered data queue, there isn’t a separate Snapshot Response topic 
name for “new” or “old” reason codes. Messages will be queued to this same queue with 
the appropriate reason code mapping, according to the setting of the configuration data. 

Note that the snapshot responses are written to ActiveMQ topics, not queues. This makes 
little difference from the interfacing perspective, but there are certain things of which to 
be aware. Firstly, messages will only be delivered to the client while the client is 
connected to the topic. If the client disconnects, any messages on the topic will be lost for 
that client. Secondly, topics can be shared between multiple clients. This means that 
snapshots may appear on the topic that were requested by another client (or multiple 
clients). 



 

WA063A01624 Issue 1 12  

 
 

Unless a client has determined that a snapshot is required, the client should not connect 
to the snapshot queue/topic. This will ensure that the client will not be impacted by 
snapshots from other clients, which are not of interest. 

5.4.2 Snapshot Process 

The process to request and receive a snapshot must be performed as follows: 

1. Connect to the Snapshot request queue and the appropriate Snapshot Response 
topic. 

2. Send a Push Port “GetSnapshotReq” message to the Snapshot Request queue. Note 
that the “viaftp” attribute of these messages is not supported by the ActiveMQ 
service and will be ignored. See the appropriate Push Port data schema for details 
of these messages. 

3. Read messages from the Snapshot Response topic until the snapshot has completed. 

4. Read and discard messages from the Push Port data queue until the correct 
snapshot marker is found. 

5. Close the Snapshot request queue and the appropriate Snapshot Response topic. 

6. Resume reading and processing the Push Port data queue. 

Any message other than a valid Push Port “GetSnapshotReq” message (including a valid 
“GetFullSnapshotReq” message) that is sent to the Snapshot request queue will be silently 
ignored. 

The Push Port service will synchronise the snapshot with a point in the Push Port data 
queue stream of messages. The snapshot that is generated will contain all of the data that 
has been output prior to that point in the stream, and will not contain any data that is 
generated after that point. 

In order to indicate the synchronisation point, the Push Port service will insert a data 
schema “SnapshotId” message into each Push Port data queue. The SnapshotId message 
will contain a unique Snapshot ID, which is used to correlate each snapshot. 

The snapshot itself will be generated to the Snapshot response topics. Each snapshot will 
begin with a data schema “SnapshotId” message and end with another “SnapshotId” 
message. Each SnapshotId message will contain the unique Snapshot ID. In addition, each 
message will have two ActiveMQ message properties called “SS_BOUNDARY” and 
“SS_REQUESTER”. 

The SnapshotId message at the start of the snapshot will set SS_BOUNDARY to “Start”, and 
the one at the end will be set to “End”, to indicate the boundaries of the snapshot. 

The SS_REQUESTER property will be set to a space separated list of ClientIDs that have 
requested this snapshot. A single snapshot response may satisfy multiple requests. A client 
that has requested a snapshot should look in this property for its own ClientID. If its 
ClientID is not found, this snapshot should be ignored and the client should discard all of 
the snapshot messages until another snapshot is found with the correct ClientID, 
corresponding to their request. 



 

WA063A01624 Issue 1 13  

 
 

Note that a snapshot will consist of many individual <sR> elements and messages, 
containing the snapshot data. This is in contrast to other (non-message queue-based) 
interfaces where the snapshot is generated within a single <sR> element. However, the 
actual data in the snapshot is the same in all cases. 

When a snapshot is requested, a client should read and discard all Push Port data queue 
messages until the next “SnapshotId” message is found. If the Snapshot ID matches the 
Snapshot ID from the snapshot topic, then the synchronisation point has been found and 
the client should stop reading further messages until the snapshot has been fully 
processed. If the Snapshot ID does not match, then further messages can be discarded until 
the correct “SnapshotId” message is found. 

Messages on the Snapshot response topics are given sequence numbers, in the same way as 
the data queues. The only difference is that the sequence number is initialised to 0 at the 
start of each snapshot. 

As can be inferred from the above description, it is possible for a client to receive a 
“SnapshotId” message in the Push Port data when no snapshot has been requested. This 
will be because another client has requested the snapshot and this is their synchronisation 
marker. Such unsolicited messages should simply be ignored. 

5.5 Darwin Timetable Rebuild 

A Darwin timetable data rebuild occurs on a nightly basis.  Currently, this is configured to 
occur at 2:00 am, although this is subject to change and should not be relied upon. During 
the rebuild, Darwin will not issue any update messages and the heartbeat (section 5.6) will 
indicate that the database is being re-initialised (HBINIT). Once the database rebuild has 
completed, Darwin will notify the Client that the database is available via the heartbeat 
message (HBOK).  

It is advantageous for clients to remain connected to the Push Port queue during the 
rebuild process. After the rebuild completes, Darwin will immediately push out any 
relevant new or changed data, and remaining connected will remove any need to perform 
a snapshot. 

5.6 Darwin Status Messages 

A status message with the current state of the interface (HBOK, HBPENDING, HBINIT or 
HBFAIL) is sent every 60 seconds if no other data is sent to the client in that time. This 
message is also sent immediately if the state of the interface has changed. 

The status messages that may be received by an ActiveMQ client are: 

Code Type  Text Description 

HBOK Heartbeat; sent 
periodically. 

System is available Darwin is running and able to accept requests 
for data. 

HBINIT Heartbeat; sent 
periodically. 

System is 
initialising 

Darwin is running but is initialising its 
timetable. Clients should wait until a HBOK 
message is received. 

HBFAIL Heartbeat; sent 
periodically. 

System is 
unavailable 

Darwin is shutdown (the push port handler is 
a separate process from the core Darwin 
process). 



 

WA063A01624 Issue 1 14  

 
 

HBPENDING Heartbeat; sent 
periodically. 

System is failing 
over and data is 
delayed 

Darwin is operating, but part of the system is 
currently in failover mode. Data may be 
queued for a short period. Clients may 
remain connected and data will be delivered 
when available. This status is only returned 
in data schema version 11 and later. 

 
Note that additional status messages that can be returned in response to client requests in 
other Push Port communication protocols will not be sent to ActiveMQ clients and 
therefore do not appear in the table above. 

The general format of Darwin Data Phase status messages is as follows: 

<?xml version="1.0"?> 

<Pport  …> 

  <FailureResp code="HBOK"> 

    System is available 

  </FailureResp> 

</Pport> 

 

From version 11 of the data schema, DCIS clients can request (via the DCIS web service 
interface) a heartbeat operation, to verify full end-to-end operation. When responding to a 
heartbeat request, a <FailureResp> message will include optional “requestSource” and 
“requestID” attributes. These attributes allow a client to detect that this heartbeat message 
was generated as the result of the DCIS web service request made by that client, verifying 
end-to-end operation. Only the client that requested the heartbeat, as determined by the 
“requestSource” attribute, will receive the message. The “requestID” attribute is an optional 
value provided by the DCIS client with their heartbeat request. 

The status returned for a heartbeat will reflect the current state of the system, as will be 
returned in the next regular status message (assuming the state does not change in the 
meantime). During some internal Darwin failover scenarios, heartbeat messages may be 
lost, even though the regular status messages appear to indicate that the system is 
available. 

  



 

WA063A01624 Issue 1 15  

 
 

6. Timetable Files 

Darwin makes available timetable files to registered clients. The format and contents of 
these files is detailed in the Push Port Data Specification (reference 2) and the Timetable 
XML schema files. 

6.1 Timetable IDs 

A Timetable ID is used to identify the currently available timetable files.  

The ActiveMQ versions of the Push Ports will not wait for Timetable files to be fully 
available before transitioning from a HBINIT status to HBOK status. When this transition 
occurs, the Timetable files may still be in the process of being generated. However, note 
that it is not guaranteed that the Timetable ID will change after every HBINIT status, so 
there may be no new Timetable files at all. 

To indicate that a new timetable is available, the ActiveMQ Push Ports will proactively 
send a “TimetableId” message, to identify the new Timetable file names. Clients that do 
not require the timetable should simply ignore this message. 

A separate “TimetableId” message will be sent for each individual Timetable file that 
becomes available. Thus, multiple “TimetableId” messages will be generated in 
succession, one for each Timetable and Reference file schema version.  

Note that due to existing schema limitations, the “TimetableId” message has mandatory 
attributes for timetable file and timetable reference data file names. Since the 
“TimetableId” notification message is only reporting the presence of a single file, only 
one of these attributes will be populated with a valid file name. The other attribute will 
consist only of white space. In future schema versions, these attributes may become 
optional, so that they may be omitted when not relevant. 

Since all schedules are now “activated” before any other data is published for them, it is 
safe to process the timetable in parallel with processing real time updates. The only need 
for the timetable is to gain access to those schedules that will be activated in the future. 

If the client has been disconnected for a significant amount of time (such that messages 
may have been lost and a snapshot is therefore required), or on first connection, the 
previous “TimetableId” message may have been missed. To check this, the client should 
look for the latest Timetable files and compare the Timetable ID against what the client 
expects. If the Timetable ID differs then the latest timetable should be downloaded and 
processed. 

Details of where to download and how to process the timetable files can be found in the 
Push Port Data Specification (reference 2). 

 



 

WA063A01624 Issue 1 16  

 
 

7. Abbreviations and Glossary 

 

ATOC Association of Train Operating Companies 

CIF Common Interface File. The format of this file defines the format in 
which ITPS provides schedule information. 

CRS Computerised Reservation System 

DCIS Darwin CIS. Interface between Darwin and CIS systems driving 
passenger displays at stations. 

False Destination A train destination. Typically used in a circular route to provide a route 
for the train. 

FTP File Transfer Protocol.  

Gzip A compression tool using the DEFLATE format as defined in RFC 1951.  
gzip is defined in RFC 1952. 

ITPS Integrated Train Planning System (replacement source of schedule data 
for TSDB). 

LDB Live Departure Boards.  This is the publicly available web interface to 
the Darwin system. 

RDG Rail Delivery Group (Previously ATOC NRE) 

RID Darwin generated ID. A unique ID held within the Darwin database to 
identify a journey. 

RTTI Real Time Train Information – database of train running information. 
Previous name for Darwin. 

Snapshot There are two types of snapshot: 

1. Standard Snapshot: information for all train journeys in the 
Darwin database that are in progress or have yet to commence. 

2. Full Snapshots: includes information for all journeys in the 
Darwin database since the last timetable rebuild. I.e. includes 
the standard snapshot plus historic schedule information. 

Snapshot data is defined in reference 2. Full Snapshots are not 
supported by the ActiveMQ interface. 

Theseus Theseus supplies train-running data received from TOC’s to Darwin. 

TIPLOC  Timing Point Location 

TOC Train Operating Company 

TSDB Train Services Database (now superseded by ITPS).  

Updates Darwin provides update information to the Client when this information 
becomes known to Darwin.  
 
Update data is defined in reference 2. 

UID Unique Identifier. (However, the UID is not always unique within the 
Darwin database) 

 

 


	CONTENTS
	1. Introduction
	2. References
	3. Communication
	3.1 Connection
	3.1.1 Connection Failover
	3.1.2 Connection Options
	3.1.3 Internet Connection
	3.1.4 Exclusive Consumers

	3.2 FTP
	3.3 Amazon S3
	3.4 Availability

	4. Configuration
	4.1.1 Filtered Push Ports
	4.1.1.1 Configuration Web Site
	4.1.1.2 Schema Version
	4.1.1.3 Reason Codes
	4.1.1.4 TIPLOC Filtering
	4.1.1.5 TD Filtering
	4.1.1.6 Message Type Filtering


	5. Protocol
	5.1 Message Queues
	5.1.1 Unfiltered Clients
	5.1.2 Filtered Clients

	5.2 Message Sequence Numbers
	5.3 Connection and Reconnection
	5.4 Snapshots
	5.4.1 Snapshot Queues
	5.4.2 Snapshot Process

	5.5 Darwin Timetable Rebuild
	5.6 Darwin Status Messages

	6. Timetable Files
	6.1 Timetable IDs

	7.  Abbreviations and Glossary

